General guidelines for marking

- Granularity for marks is 0.1 p.
- A simple numerical error resulting from a typo is punished by 0.2 p unless the grading scheme explicitly says otherwise.
- Errors which cause dimensionally wrong results are punished by at least 50 % of the marks unless the grading scheme explicitly says otherwise.
- Propagating errors are not punished repeatedly unless they either lead to considerable simplifications or wrong results whose validity can easily be checked later.

T1: Floating cylinder

Solution I: energetic approach

Denote the density of the liquid by ϱ , so the density of the cylinder is $\gamma \varrho$. In equilibrium (i.e. when the net force acting on the cylinder is zero) the immersed part of the cylinder has height γh .

Consider the system in a moment when the cylinder is displaced by distance x_1 downward and moves down with velocity v_1 . As a result of the motion of cylinder the liquid level rises by some height x_2 , and the liquid flows in the gap between the cylinder and beaker with some velocity v_2 upwards (see *Fig. 1*).

The relation between the aforementioned displacements and velocities are given by the continuity law:

$$x_1s = x_2(S-s), \quad v_1s = v_2(S-s).$$

In the following we express the potential and kinetic energy of the system. Compared to the equilibrium position the cylinder of mass $\gamma \varrho sh$ sunk by x_1 , while the potential energy change caused by the redistribution of liquid can be imagined as the center of mass of liquid with mass $\varrho s x_1$ rises by distance $\gamma h + x_1/2 + x_2/2$. Taken the potential energy in the equilibrium state to be zero, the potential energy in the state indicated in the right figure can be written as

$$E_{\text{pot}} = -\gamma \varrho shg x_1 + \varrho s x_1 g \left(\gamma h + \frac{x_1 + x_2}{2}\right)$$

After opening the bracket the first two terms cancel each other:

$$E_{\text{pot}} = \frac{1}{2} \rho sg x_1 (x_1 + x_2) \,.$$

After expressing x_2 from continuity law and some simplification we get a quadratic expression for the potential energy:

$$E_{\text{pot}} = \frac{1}{2} \rho sg x_1 \left(x_1 + \frac{s}{S-s} x_1 \right) = \frac{1}{2} \rho \frac{sS}{S-s} g x_1^2 \,.$$

Now let us calculate the kinetic energy of the system. The contribution from the cylinder is straightforward, $\gamma \varrho shv_1^2/2$, but the motion of the liquid is more complicated.

Note. We may notice that since s/(S - s) = 50, the speed v_2 of the liquid in the narrow gap is 50 times larger than the typical speed of the liquid below the cylinder (which can be estimated to be in the range of v_1). And while the mass of the liquid below the cylinder is much larger than the mass of liquid inside the gap (the ratio is ca. 25 if the "few centimeters" in the problem text is taken to be 3.5 cm), the kinetic energy is proportional to the square of the velocity, so the kinetic energy of the liquid inside the gap is roughly 100 times larger than the kinetic energy of the liquid below the cylinder.

Since the kinetic energy of the liquid below the cylinder is negligible, we can write the total kinetic energy of the system as:

$$E_{\rm kin} = \underbrace{\frac{1}{2} \gamma \varrho s h v_1^2}_{\rm cylinder} + \underbrace{\frac{1}{2} \varrho (S-s) \left(\gamma h + x_1 + x_2\right) v_2^2}_{\rm liquid}$$

Here $x_1, x_2 \ll \gamma h$, so we shall keep only the term containing γh in the second bracket:

$$E_{\rm kin} = \frac{1}{2}\gamma \varrho shv_1^2 + \frac{1}{2}\varrho(S-s)\gamma hv_2^2$$

Expressing v_2 from continuity law gives the following:

$$E_{\rm kin} = \frac{1}{2} \gamma \varrho s h v_1^2 + \frac{1}{2} \varrho \gamma h \frac{s^2}{S-s} v_1^2 = \frac{1}{2} \varrho \gamma h \frac{sS}{S-s} v_1^2 \,.$$

The potential and kinetic energies can be written in the form

$$E_{\rm pot} = rac{1}{2} k_{\rm eff} \, x_1^2 \,, \qquad E_{\rm kin} = rac{1}{2} m_{\rm eff} \, v_1^2$$

where the effective spring constant and effective mass are given by

$$k_{\rm eff} = \varrho \frac{sS}{S-s} g \,, \qquad m_{\rm eff} = \varrho \gamma h \frac{sS}{S-s} \,. \label{eq:keff}$$

So the oscillation is indeed harmonic, thus the angular frequency and the period are:

$$\omega = \sqrt{\frac{k_{\rm eff}}{m_{\rm eff}}} = \sqrt{\frac{g}{\gamma h}}, \qquad T = 2\pi \sqrt{\frac{\gamma h}{g}} = 0.53 \, {\rm s} \, . \label{eq:weight}$$

Note. The static restoring force, acting on the cylinder is due to the change (relative to the equilibrium position) of the hydrostatic pressure at its lower base:

$$F = -s\rho g(x_1 + x_2) = -\frac{sS}{S-s}\rho gx_1.$$

This immediately gives effective stiffness of the system $k_{\text{eff}} = \frac{sS}{S-s}\rho g$. Alternatively, one may wish to integrate $\int F dx_1$ to get the potential

Alternatively, one may wish to integrate $\int F dx_1$ to get the potential energy

$$E_{\rm pot} = \frac{sS}{S-s} \frac{\rho g}{2} x_1^2. \label{eq:Epot}$$

Solution II: dynamical approach

When the cylinder is displaced from its equilibrium position downwards by distance x_1 , the net restoring force (pointing up) can be calculated as the sum of the weight of the cylinder and the force from the difference of pressures at the top (p_0) and bottom (p) of the cylinder. As a result of the net force, the cylinder accelerates upwards with a_1 , and at the same time, the liquid located in the gap between the cylinder and the wall of the beaker accelerates down with a_2 . The relation between the magnitudes of a_1 and a_2 is given by the continuity law:

$$sa_1 = (S - s)a_2.$$

If the liquid in the gap was not accelerating, the pressure difference $p - p_0$ would be equal to the hydrostatic pressure of the liquid column in the gap. Due to the acceleration of the liquid, $p - p_0$ can be expressed from Newton's 2nd law applied for the liquid column of unit area located in the gap:

$$p_0 - p + \varrho g(\gamma h + x_1 + x_2) = \varrho(\gamma h + x_1 + x_2)a_2,$$

where we used the notations of *Solution I*, and the downward direction was taken as positive.

Newton's 2nd law for the cylinder reads as

$$(p-p_0)s - \gamma \varrho shg = \gamma \varrho sha_1$$

After expressing $p - p_0$ from the previous equation, and then substituting it here we get:

$$\varrho g(\gamma h + x_1 + x_2)s - \varrho(\gamma h + x_1 + x_2)a_2s - \gamma \varrho shg = \gamma \varrho sha_1.$$

Since the amplitude of the liquid level is small, the terms containing a_2x_1 and a_2x_2 can be neglected. After rearranging we get:

$$\varrho gs(x_1 + x_2) = \gamma \varrho sh(a_1 + a_2).$$

Using the relations between the displacements and accelerations we finally get:

$$a_1 = \frac{g}{\gamma h} x_1 \,.$$

Taking into account the opposite directions of x_1 and a_1 , this is the dynamical condition of a simple harmonic motion with angular frequency and period

$$\omega = \sqrt{\frac{g}{\gamma h}}\,, \qquad T = 2\pi \sqrt{\frac{\gamma h}{g}} = 0.53\,\mathrm{s}\,. \label{eq:sigma_state}$$

Note. In this solution we assumed that the pressure p is constant throughout the bottom surface of the cylinder. This assumption is equivalent with saying that the horizontal acceleration of the liquid below the cylinder at every point is much smaller than a_2 , which is reasonable.

Marking scheme

All solutions should be graded according to only one marking scheme (either energetical or dynamical). If the student used both ideas, that marking scheme should be used which results in a higher score.

Solı	ition I: energetic solution	pts
i	Height of submerged part of cylinder in equilib-	0.5
	rium is γh .	
ii	Realizing that the kinetic energy of water is impor-	1.0
	tant	
iii	Realizing that the kinetic energy of liquid below the	1.5
	cylinder is negligible	
iv	Expressing the kinetic energy of liquid inside the	2.5
	gap as a function of velocity of cylinder.	
v	Potential energy change of liquid as a function of	1.0
	the small displacement of cylinder	
vi	Potential energy change (0.5 p) and kinetic energy	1.0
	change of cylinder (0.5 p)	
vii	Continuity law either for displacements or veloci-	1.0
	ties (only 0.5 p if the factor is $S/(S-s)$)	
viii	Expressing ω from the formulas for E_{pot} and E_{kin}	1.0
	($\omega=\sqrt{k_{ m eff}/m_{ m eff}}$ or equivalent).	
ix	$T = 2\pi/\omega$	0.3
х	Correct substitution of values, final result	0.2
	Total number of points	10.0
Soly	ution III dynamical colution	nto
5010	tion II: dynamical solution	pis
т	Height of submound most of ordinden in semilik	
Ι	Height of submerged part of cylinder in equilib-	0.5
I	Height of submerged part of cylinder in equilibrium is γh	0.5
I II	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top	0.5
I II	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff.	0.5
I II III	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder	0.5 1.0 1.5
I II III	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides	0.5 1.0 1.5
I II III IV	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero	0.5 1.0 1.5 2.5
I II III IV	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.)	0.5 1.0 1.5 2.5
I II III IV V	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II	0.5 1.0 1.5 2.5 1.0
I II III IV V	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly)	0.5 1.0 1.5 2.5 1.0
I II IV V VI	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law	0.5 1.0 1.5 2.5 1.0 1.0
I II IV V VI VII	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler-	0.5 1.0 1.5 2.5 1.0 1.0 1.0
I II IV V VI VI	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler- ations (only 0.5 p if the factor is $S/(S - s)$)	0.5 1.0 1.5 2.5 1.0 1.0 1.0
I II IV V VI VII VIII	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler- ations (only 0.5 p if the factor is $S/(S - s)$) Concluding a linear relation between acceleration	0.5 1.0 1.5 2.5 1.0 1.0 1.0 0.5
I II IV V VI VII VIII	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler- ations (only 0.5 p if the factor is $S/(S - s)$) Concluding a linear relation between acceleration and displacement of cylinder	0.5 1.0 1.5 2.5 1.0 1.0 1.0 0.5
I II IV V VI VII VIII IX	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler- ations (only 0.5 p if the factor is $S/(S - s)$) Concluding a linear relation between acceleration and displacement of cylinder Expressing ω from the dynamical equations (ex-	0.5 1.0 1.5 2.5 1.0 1.0 1.0 1.0 0.5 0.5
I II IV V VI VII VIII IX	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler- ations (only 0.5 p if the factor is $S/(S - s)$) Concluding a linear relation between acceleration and displacement of cylinder Expressing ω from the dynamical equations (ex- pressing $\omega = \sqrt{k_{\rm eff}/m_{\rm eff}}$ correctly or equivalent).	0.5 1.0 1.5 2.5 1.0 1.0 1.0 0.5 0.5
I II IV V VI VII VIII IX X	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is <i>not</i> $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler- ations (only 0.5 p if the factor is $S/(S - s)$) Concluding a linear relation between acceleration and displacement of cylinder Expressing ω from the dynamical equations (ex- pressing $\omega = \sqrt{k_{\rm eff}/m_{\rm eff}}$ correctly or equivalent). $T = 2\pi/\omega$	0.5 1.0 1.5 2.5 1.0 1.0 1.0 1.0 0.5 0.5 0.3
I II IV V VI VII IX XI	Height of submerged part of cylinder in equilibrium is γh Realizing that the pressure difference between top and bottom of the cylinder is not $\varrho g \times$ height diff. Neglecting the motion of water below the cylinder but not on the sides Newton's 2nd law for liquid in the gap with nonzero acceleration. (0 p for $p - p_0 = \varrho g \times$ height diff.) Newton's 2nd law for cylinder (still full mark if II was not realized but $p - p_0$ was used properly) Using the change in water level in Newton's 2nd law Continuity law either for displacements or acceler- ations (only 0.5 p if the factor is $S/(S - s)$) Concluding a linear relation between acceleration and displacement of cylinder Expressing ω from the dynamical equations (ex- pressing $\omega = \sqrt{k_{\rm eff}/m_{\rm eff}}$ correctly or equivalent). $T = 2\pi/\omega$ Correct substitution of values, final result	0.5 1.0 1.5 2.5 1.0 1.0 1.0 1.0 0.5 0.5 0.3 0.2

T2: Thermal oscillations

Part (a): Critical voltages

The power heating the resistor is $P_{\rm el} = V^2/R_j$. The thermal equilibrium is reached when $P_{\rm el} = P = \alpha(T_{\rm eq} - T_0)$. To avoid oscillations, the equilibrium temperature $T_{\rm eq}$ must satisfy $T_{\rm eq} < T_c$ if $R = R_1$ and $T_{\rm eq} > T_c$ if $R = R_2$. Solving for V, we have

$$V = \sqrt{R_j \alpha (T_{\rm eq} - T_0)}.$$
 (1)

The critical values therefore are

$$V_1 = \sqrt{R_1 \alpha (T_c - T_0)}$$
 and $V_2 = \sqrt{R_2 \alpha (T_c - T_0)}$. (2)

Part (b): Temperature behaviour

In the oscillating regime, we have a time-dependent current I(t). The power dissipated over the resistor is $P_{\rm el}(t) = R(t)I(t)^2$. By assumption (ii), we may assume that the thermal equilibrium is reached very fast, i.e. $P_{\rm el}(t) = P(t)$. The temperature T(t) is therefore determined by the current via

$$T(t) = T_0 + \frac{R(t)I(t)^2}{\alpha}.$$
 (3)

If the resistance has value R_1 , the current will increase, trying to reach $J_1 = V/R_1$. The difference $I(t) - V/R_1$ will decay exponentially, with characteristic time L/R_1 . The phase transition occurs once the critical current

$$I_1 = \sqrt{\frac{\alpha (T_c - T_0)}{R_1}}$$

is reached. After the phase transition, the current will decrease, approaching the new equilibrium value $J_2 = V/R_2$. Again, $I(t) - V/R_2$ will decay exponentially with characteristic time L/R_2 , until the critical current

$$I_2 = \sqrt{\frac{\alpha(T_c - T_0)}{R_2}}$$

is reached. This behaviour is shown in Fig. 1.

Fig. 1

Together with (3), we see that the temperature behaves like in Figure 2.

The maximum and minimum temperatures will be attained just after the phase transitions occur. We obtain that

$$\frac{T_{\max} - T_0}{T_{\min} - T_0} = \frac{R_2 I_1^2}{R_1 I_2^2} = \frac{R_2^2}{R_1^2}.$$
(4)

Part (c): Period of oscillations

If the phase transition occurs at t = 0, with the resistance changing from $R_{j'}$ to R_j , the current is given by

$$I(t) = \frac{V}{R_j} + \left(I_{j'} - \frac{V}{R_j}\right) e^{-R_j t/L}$$
(5)

until the next phase transition occurs when $I(t_j) = I_j$. Hence, the period is

$$t_1 + t_2 = \frac{L}{R_1} \ln\left(\frac{I_2 - V/R_1}{I_1 - V/R_1}\right) + \frac{L}{R_2} \ln\left(\frac{I_1 - V/R_2}{I_2 - V/R_2}\right)$$
(6)

Inserting the relations $R_2 = \eta R_1$ and $V = \sqrt{V_1 V_2} = \eta^{1/4} \sqrt{R_1 \alpha (T_c - T_0)}$, we obtain the period

$$\frac{L}{R_1}\ln\left(\frac{7}{4}\right) + \frac{L}{R_2}\ln\left(7\right) = \frac{L}{R_1}\left(\ln\left(\frac{7}{4}\right) + \frac{1}{16}\ln\left(7\right)\right)$$
$$\approx 0.68\frac{L}{R_1}.$$
 (7)

Marking scheme

Tas	sk (a): Critical voltages	pts
a1	Formula for the power dissipation $P_{\rm el} = V^2/R_j$.	0.5
a2	Relating the power dissipation to the tempera-	0.5
	ture of the resistor in oscillations-free stationary	
	regime, $P_{ m el}=P=lpha(T_{ m eq}-T_0)$	
a3	Expressing the voltage in terms of the temperature	0.5
	if the thermal equilibrium were to be reached, $V=% \left(V_{0}^{2}+V_{0}^{2}\right) \left(V_{0}^{2}+V_{0}^{2}+V_{0}^{2}+V_{0}^{2}\right$	
	$\sqrt{R_j lpha (T_{\sf eq} - T_0)}$. Subtract 0.1 pts if V is not ex-	
	pressed explicitly.	
a4	Realising that oscillations will not happen if $V>$	0.5
	$\sqrt{R_2lpha(T_{ m eq}-T_0)}$ or $V<\sqrt{R_1lpha(T_{ m eq}-T_0)}$. No	
	marks if only one inequality is obtained (but no	
	subtractions because of that in a3 - in most cases	
	those who got correct expression for one of the volt-	
	ages but has a wrong or missing expression for the	
	other gets full marks for a1-a3, and 0 pts for a4).	
	Total number of points for Task (a)	2.0
Tas	sk (b): Temperature behavior	pts
b1	Realising that the $I-t$ curve is made of segments	1.0
	of exponents, joined without discontinuities. Par-	
	tial credit of 0.5 pts if it is made of curved segments	
	for which it is not clear that these are exponents, or	
	if these are growing exponents, but which are con-	
	nected continuously with a discontinuous deriva-	
	tive $\frac{\mathrm{d}I}{\mathrm{d}t}$. No points if $I(t)$ is discontinuous, or if only	
	one segment of an exponent is shown. Full marks	
	can be given if there is no $I-t$ graph, but the $T-t$	
	graph is made of the segments of vanishing expo-	
	nents, connected with temperature jumps in a cor-	
	rect direction, and a partial credit of 0.5 pts if the	
	segments of the $T-t$ are either growing exponents	
	or curves of unclear shape, still connected so that it	
	would correspond to a continuous $I(t)$ -curve with	
	a discontinuous derivative. Partial credit of 0.5 pts	
	is given if there is no $I-t$ -curve shown, but $V-t$	
	curve is shown to be made of decaying exponential	
	segments, connected with jumps	
b2	Realising that (i) one of these exponents is in a form $\frac{1}{2}$	0.3+
	$a_1 - b_1 e^{-t/\tau_1}$ and (ii) the other one — in a form	0.3+

 $a_1 - b_1 e^{-t/\tau_1}$ and (ii) the other one — in a form $a_2 \,+\, b_2 {
m e}^{-t/ au_2}$ where (iii) the $a_1 \,>\, a_2$ and (iv) $au_1 > au_2$. It is not necessary to write down these inequalities mathematically — it is enough it these are clear from a sketch. Inequality $au_1 > au_2$ does not need to be written if expressions for au_1 and au_2 are given. Full marks can be given if I - t graph is missing, but T-t graph is correct and has all the features as described in b6. Full marks can be also given if the correct exponential forms are documented not here, but in part c.

	b3	Realising that this exponential behaviour breaks	1.0
		down once the critical temperature is reached. This	
_		does not need to be written specifically if the <i>jumps</i>	
		in $T - t$ graph happen at $T = T_c$. No marks are	
		given if there is no clear discontinuity of T at T_c	
		and/or if there are discontinuities of $T(t)$ or $\frac{dt}{dt}$ at	
		some other values of <i>I</i> .	0.5
	b4	Relating the critical temperature to the correspond-	0.5
	b .c	Ing critical current I_j	0.5
	cu	Realising that the temperature curve $I(t)$ is re-	0.5
	1.0	lated to $I(t)$ -curve, $I(t) = I_0 + \frac{\alpha}{\alpha}$	1.0
	90	Drawing a correct final sketch which has the fol-	1.0
		lowing features: exponential segments showing an $T(t)$ in a night direction	
		exponential relaxation of $I(t)$ in a right direction	
		both when $K = K_1$ and when $K = K_2$; jumps in a wight direction each time when T we choose T (such	
		right direction each time when T reaches T_c (sub-	
		if the temperature jumps do not easure at the same	
_		If the temperature jumps do not occur at the same value of T). No points are given if any of the listed	
		features is missing	
_	 		
	b7	Using the feature from the graph that the maximal	0.5
		and minimal temperatures are taken immediately L	
	ho	after a phase transition when $I = I_1$ and $I = I_2$	0.5
	80	correct answer for the ratio of the maximal and	0.5
		is not simplified	
		Total number of points for Task (b)	60
	-		0.0
	Tas	k (c): Period of oscillations	pts
	CI	Expressing the duration of each of the exponential $L_{i,i}$ where $\Lambda I_{i,i}$ and	0.5+
		segments as $l_j = \frac{1}{R_j} \ln \frac{\Delta I_{j,f}}{\Delta I_{j,f}}$ where $\Delta I_{j,i}$ and	0.5
		$\Delta I_{j,f}$ denote the corresponding initial and final de-	
		partures of the current from the equilibrium value	
		(full marks to be given if the final answer is correct).	
		Subtract 0.2 for each incorrect $\Delta I_{j,i}$ and $\Delta I_{j,f}$,	
		i = 1, 2 (this means that if none of them is cor-	
		rect, only 0.2 pts are given for c1). 60% of points if $t_{\rm e}$ is related to $\Delta I_{\rm eff}$ and $\Delta I_{\rm eff}$ correctly but not	
		ι_j is related to $\Delta I_{j,i}$ and $\Delta I_{j,f}$ correctly, but not	
	~ ~	expressed explicitly.	05,
F	CΔ	(40% of it if the answer is not simplified)	0.5+
۲.		(4070 01 it if the answer is not sintpined) Total number of points for Tack (a)	0.5 2 n
F		10tal number of points for 1dSK (C)	<u> </u>

0.3+ 0.1

T3: Dipole in a magnetic field

Part (a): Uniform linear motion

Lorentz forces acting on the charges:

$$\vec{F}_{+} = q\vec{v}_{+} \times \vec{B} = q(\vec{v} + \vec{\omega} \times \vec{r}) \times \vec{B},$$
$$\vec{F}_{-} = (-q)\vec{v}_{-} \times \vec{B} = (-q)(\vec{v} - \vec{\omega} \times \vec{r}) \times \vec{B},$$

where \vec{r} is a vector from the center of mass to the position of the positive charge.

According to Newton's first law, the center-of-mass C of the dipole will move with constant velocity provided that the net force:

$$\vec{F} = \vec{F}_{+} + \vec{F}_{-} = q(\vec{v}_{+} - \vec{v}_{-}) \times \vec{B},$$
 (8)

acting on the dipole, is zero. Since $ec{v}_+, ec{v}_-$ and $ec{B}$ are perpendicular, we require $ec{v}_+ = ec{v}_-$. It means that dipole does not rotate: $\omega = \omega_0 = 0.$

The pure translation, however, is possible if the pair of forces \vec{F}_+ , \vec{F}_- , has zero torque about C:

$$\begin{aligned} \vec{\tau} &= \vec{r} \times \vec{F}_{+} - \vec{r} \times \vec{F}_{-} = 2q\vec{r} \times (\vec{v} \times \vec{B}) = \\ 2q\left(\vec{v}(\vec{r} \cdot \vec{B}) - \vec{B}(\vec{r} \cdot \vec{v})\right) = -2q\vec{B}(\vec{r} \cdot \vec{v}). \end{aligned} \tag{9}$$

We conclude that scalar product is zero only when $\vec{v} \perp \vec{r}$, i.e. **Part (c): Reversal of the dipole** the initial velocity should be parallel to Y direction.

In summary, the dipole will move uniformly along Y if, and only if, $\vec{v}_0 || Y$ and $\omega_0 = 0$.

Part (b): Circular motion

The net force can be calculated as:

$$\vec{F} = \vec{F}_{+} + \vec{F}_{-} = 2q(\vec{\omega} \times \vec{r}) \times \vec{B} = -2q\left(\vec{\omega}(\vec{B} \cdot \vec{r}) - \vec{r}(\vec{B} \cdot \vec{\omega})\right) = 2qB\omega\vec{r} = B\omega\vec{p}, \quad (10)$$

where \vec{p} is a dipole moment ($|\vec{p}| = qd = 2qr$ and the direction aligns with \vec{r}).

When C orbits a circle, \vec{F} acts as a centripetal force, i.e. it points to the center of the circle. Since $\vec{F} \| \vec{p}$, the dipole is always in line with the center of the orbit. Therefore, the orbital angular velocity of C is equal to the angular velocity of rotation of the dipole about C.

The magnitude of the orbital velocity is:

$$v_0 = |\omega_0| R_c$$

From Newton's second law, and accounting that the total mass of the dipole is 2m:

$$\frac{2mv_0^2}{R_c} = \frac{pBv_0}{R_c},$$

i.e. the magnitude of velocity is:

$$v_0 = \frac{pB}{2m} = \frac{qBd}{2m}$$

and the radius of the orbit is:

$$R_c = \frac{v_0}{|\omega_0|} = \frac{qBd}{2m|\omega_0|}$$

The coordinates of the center of the circle are:

$$(x_c, y_c) = (\pm R_c, 0)$$

where the "+" sign corresponds to $\omega_0 > 0$, i.e. counter-clockwise rotation, and the "-" sign —to clockwise rotation. In either case, the initial velocity should point to the negative Ydirection:

$$\vec{v}_0 = -\frac{qdB}{2m}\hat{j}.$$

In (10) we have shown that the net force:

$$\vec{F} = 2q(\vec{\omega} \times \vec{r}) \times \vec{B} = (\vec{\omega} \times \vec{p}) \times \vec{B}.$$

Since the dipole moment \vec{p} rotates with angular velocity $\vec{\omega}$, its time derivative: $d\vec{n}$

$$\frac{dp}{dt} = \vec{\omega} \times \vec{p}.$$

From Newton's second law:

$$2m\frac{d\vec{v}}{dt} = \vec{F} = \frac{d\vec{p}}{dt} \times \vec{B}.$$

By integrating the equation, we arrive at an additional conservation law in the system (conservation of the so called "generalized momentum"):

$$2m\vec{v}-\vec{p}\times\vec{B}=\text{const}$$

Thus, if \vec{p} has reversed its direction from \vec{p}_0 to $\vec{p}_1 = -\vec{p}_0$, then the velocity:

$$\vec{v}_1 = \vec{v}_0 + \frac{(\vec{p}_1 - \vec{p}_0) \times B}{2m} = -\frac{\vec{p}_0 \times B}{m}.$$
 (11)

Since the magnetic field does not perform work on moving electric charges, the kinetic energy of the dipole is conserved:

$$\frac{I}{2}\omega_0^2 = \frac{I}{2}\omega_1^2 + \frac{2m}{2}v_1^2,$$

Here, $I = 2 \times m(d/2)^2 = md^2/2$ is the moment of inertia of the dipole with respect to its center-of-mass. Since v_1 doesn't depend on angular velocities, ω_0 is minimal when $\omega_1 = 0$. Finally,

$$\omega_{\min} = v_1 \sqrt{\frac{2m}{I}} = \frac{p_0 B}{m} \sqrt{\frac{4}{d^2}} = \frac{2qB}{m}$$

Alternatively, we can introduce θ to be the angle between the dipole moment and the axis X ($\theta_0 = 0$) and rewrite the equations of translational motion in coordinates using $\omega = \dot{\theta}$:

$$\dot{v}_x = \dot{\theta} \frac{qBd}{2m} \cos \theta, \qquad \dot{v}_y = \dot{\theta} \frac{qBd}{2m} \sin \theta.$$

By integrating these equations, given zero initial velocity, we find how velocity depends on θ :

$$v_x = \frac{qBd}{2m}\sin\theta, \quad v_y = \frac{qBd}{2m}(1-\cos\theta).$$

Using the expression (9) for the torque, we can write the equation of rotational motion as:

$$\begin{split} I\ddot{\theta} &= \tau = -2qB(r_xv_x + r_yv_y) = -\frac{q^2B^2d^2}{2m}\sin\theta,\\ \ddot{\theta} &+ \frac{q^2B^2}{m^2}\sin\theta = 0, \end{split} \tag{12}$$

This is the equation of a mathematical pendulum of length L in gravitational field $g = L(qB/m)^2$. And the equivalent question becomes what is the minimal push $\dot{\theta}_0$ required in the bottom position for the pendulum to reach the top position. Kinetic energy of the pendulum $K = \frac{1}{2}mL^2\dot{\theta}_0^2$ will be transfered to the potential energy U = 2mgL, from which we find:

$$\omega_{\min} = \dot{ heta}_0 = \sqrt{4rac{g}{L}} = 2rac{qB}{m}.$$

Note. Due to symmetry, both clockwise and counterclockwise initial rotation with absolute value of $|\omega_0|$ will work.

Part (d): Trajectory asymptote

If dipole's trajectory has an asymptote, then its movement along the asymptote is uniform. Indeed, if there is a linear motion with acceleration, the dipole \vec{p} should be always aligned with the direction of motion, thus, not rotating. and as we found in part (a), the absence of rotation can only be maintained if $\vec{v} = \text{const}$ and $\vec{v} \perp \vec{p}$.

The uniform linear motion requires $\omega = 0$, and this happens in the limit when the orientation is reversed $\vec{p}_1 = -\vec{p}_0$. According to (11), in the limit, the dipole is travelling with the speed $\vec{v}_1 = p_0 B \hat{j}/m$. Thus the asymptote is parallel to Y axis: x = D (for counter-clockwise initial rotation).

If \vec{R}_+ and \vec{R}_- are absolute positions of the charges, we can write equation for the angular momentum around the origin L_O :

$$\frac{d\vec{L}_O}{dt} = \vec{R}_+ \times (q\dot{\vec{R}}_+ \times \vec{B}) + \vec{R}_- \times (-q\dot{\vec{R}}_- \times \vec{B}) = -q\vec{B}\left(\vec{R}_+ \cdot \dot{\vec{R}}_+ - \vec{R}_- \cdot \dot{\vec{R}}_-\right) = -\frac{q\vec{B}}{2}\frac{d}{dt}\left(R_+^2 - R_-^2\right).$$

After integration, we find one more conservation law (conservation of the "generalized angular momentum"):

$$\begin{split} \vec{L}_{O} + \frac{q\vec{B}}{2} \left(R_{+}^{2} - R_{-}^{2} \right) &= \vec{L}_{O} + \frac{q\vec{B}}{2} \left((\vec{R}_{+} + \vec{R}_{-}) \cdot (\vec{R}_{+} - \vec{R}_{-}) \right) \\ &= \vec{L}_{O} + \vec{B} (\vec{R} \cdot \vec{p}) = \text{const}, \end{split}$$

where $\vec{R} = \frac{1}{2}(\vec{R}_+ + \vec{R}_-)$ is the position of center of mass. We also used the fact that $q(\vec{R}_+ - \vec{R}_-) = 2q\vec{r} = \vec{p}$.

Initially, centre of mass coincides with origin ($ec{R}_0=0$):

$$L_O(0) = I\omega_0 = 2m\frac{d^2}{4}2\frac{qB}{m} = qBd^2.$$
 (13)

At asymptote, the dipole has reversed direction $\vec{p}_1 = -\vec{p}_0$ and charges are travelling along parallel lines $x = D \pm r$ with the velocity \vec{v}_1 :

$$L_O(\infty) + B(\vec{R}_1 \cdot \vec{p}_1) = m(D-r)v_1 + m(D+r)v_1 - BDp_0$$

= $2mD\frac{p_0B}{m} - BDp_0 = BDp_0 = BDqd.$ (14)

Since (13) equals (14), we conclude that D = d.

We can arrive to the same conclusion differently. Notice that we are interested in the \boldsymbol{x} coordinate of \boldsymbol{C} at infinity:

$$D = x_{\infty} = \int_0^\infty v_x \, dt = \frac{qBd}{2m} \int_0^\infty \sin \theta \, dt.$$

From (12), we can express $\sin \theta$:

$$\begin{split} \int_0^\infty \sin \theta \, dt &= -\frac{m^2}{q^2 B^2} \int_0^\infty \ddot{\theta} \, dt = \\ &- \frac{m^2}{q^2 B^2} (\dot{\theta}_1 - \dot{\theta}_0) = \frac{m^2}{q^2 B^2} \omega_{\min} = \frac{2m}{qB}. \end{split}$$

Finally,

$$D = \frac{qBd}{2m} \frac{2m}{qB} = d.$$

Note. If initial rotation is clockwise ($\omega_0 < 0$), the asymptote has an equation x = -D, but the distance to the origin remains the same.

Marking scheme

Par	rt (a): Uniform linear motion	pts	
a1	Rationalizes that the net force on the dipole is zero	0.7	- 1
	if the two poles move with equal velocities; Just ar-		-
	gument $v={ m const}\Rightarrow\sumec{F}=0$ is 0 pts.		
a2	Concludes that $\omega_0 = 0$.	0.3	
a3	Using the argument of zero torque, concludes that	0.7	
	the velocity should be perpendicular to the dipole;		
	Just argument $\omega = { m const} = 0 \Rightarrow ec{ au} = 0$: 0.4 pts		
a4	States explicitly that $ec v_0 \ Y$ (or $ot X$).	0.3	_
	Total number of points for part (a)	2.0	
Par	rt (b): Circular motion	pts	_
b1	Derives expression for the magnitude of the net	0.9	
	force on the dipole in terms of ω AND states explic-		
	itly that it is parallel to the dipole axis OR derives		
	one single vector expression.		
b2	Realizes (drawing or explicit statement) that $ec{F}$ and	0.5	
	the dipole axis point to the center of the orbit, and		
	concludes that ω_0 is equal to the orbital angular ve-		
	locity.		
b3	Writes down Newton's second law for the circular	0.5	
	motion.		
b4	Makes use of the relation $v_0= \omega R_c$.	0.2	-
b5	Derives expression for v_0 and specifies its direction	0.3	
	(drawing or statement) OR derives one single vec-		
	tor expression for $ec{v}_0$; if direction is wrong or miss-		
	ing 0.2 pts		
b6	Derives explicitly $R_c = qbD/(2m \omega_0)$. If $ \cdot $ is	0.3	
	omitted, still full points.		
b7	Writes down the coordinates of the center of the or-	0.3	
	bit; 0.2 for correct x_c (including sign), 0.1 for cor-		
	rect $y_c; x_c = q b D / (2 m \omega_0)$ is a correct answer		_
	Total number of points for part (b)	3.0	-

Only one of the grading tables should be used for part (c), the one which results in a higher score.

ral	Dry integrating the equation (a) of motion devices a	1 Г
C1	By integrating the equation(s) of motion derives a	1.5
	generalized momentum conservation law – a re-	
	lationship between the linear momentum $2mv$ and the dinale moment \vec{x} in vector form OB for the	
	the dipole moment p – in vector form OR for the	
<u></u>	Cartesian components.	0.2
CΖ	states explicitly that the kinetic energy of the tipole	0.3
<u></u>	conserves.	
03	writes down explicit expression for the killence en-	0.5
	of the conter of mass	
c4	Populizes that (is is minimal when $\omega = 0$ in the	0.2
64	Realizes that ω_0 is minimal when $\omega_1 = 0$ in the reversed position	0.2
c5	By using the "generalized momentum" conserve-	0.5
CJ	tion derives explicit expression for the linear ve-	0.5
	locity w	
<u>c6</u>	Applies the concernation of energy to find relation	0.0
0	ship between w_1 and w_2	0.0
c7	Derives the final expression for ω	0.2
C7	Total number of points for part (c)	0.2
lto	Total number of points for part (c)	4.0
Daı	rhauve approach. penuurum analogy et (c): Reversal of the dinole	nte
1 س	Derives the expression $\tau = -B(\vec{n} \cdot \vec{v})$ for the	0.5
C1	torque. Even if the derivation has been made in	0.5
	narts (a) or (b) the points should be assigned to	
	Task (c): If term $(\vec{B} \cdot \vec{n})$ is not cancelled still full	
	noints	
c2	By integrating the equations of motion expresses	15
02	v_{r} and v_{r} in terms of θ	1.5
c3	Writes down the equation of rotational motion in	0.5
	terms of sin θ .	
c4	States that the angular dynamics of the dipole is	0.3
	equivalent to a large-amplitude oscillation of a	
	mathematical pendulum.	
c5	Realizes that ω_0 is minimal when $\omega_1 = 0$ in the	0.2
	reversed position.	
c6	Applies the conservation of energy to the "equiva-	0.8
	lent pendulum".	
c7	Derives the final expression for ω_{\min}	0.2
	Total number of points for part (c)	4.0
Dai	t (d): Trajectory asymptote	 nt
га d1	Rationalizes that the asymptote is narallal to V i.e.	P C
uı	r = +D	
d2	$\omega = \pm \nu$. Rationalizes that asymptotically the motion is lin-	02
uΔ	ear uniform	0.2
40	Fither finds conconnection laws $\vec{L} = - \vec{D} (\vec{D} - \vec{n})$ OD	
u3	Either mus conservation law $L_O + B(K \cdot p)$ OR united x_{-} as integral of y_{-} (with emploit even	0.3
	writes x_{∞} as integral of v_x (with explicit expres-	
44	Sion for v_x) as a method to find D .	0.0
u4	correctly computes generalized angular momen-	0.2
45	Concludes that $D = d$	0.0
uð	-u.	0.2